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INTRODUCTION

In a fundamental series of papers de Boor and Hollig [2-4] and de Boor
and De Vore [1] have introduced box splines and have shown their
usefullness in multivariate approximation. They have answered many
questions and have left several open ones.

One question de Boor and Hollig leave open is: What is the best degree of
approximation obtainable? To state this question more precisely we
introduce the following notation.

Let .1 be the mesh obtained from the lines x = m, y = n, y = x +p, where
m, n, and p are arbitrary integers and II~,t1 = IIk ,t1 II CP, the space of
bivariate piecewise polynomial functions of total degree ~k, on the mesh .1,
belonging to CP globally. Set

m(k) = min {2(k - p), k + I}.

de Boor and Hollig have shown that if IIt t1 has approximation order m, i.e.,

for all sufficiently smooth functions while

then m ~ m(k). See below for definition of SheeP). Further deBoor and
Hollig:

Conjecture. The exact approximation order of IIt t1 never differs from its
upper bound m(k) by more than 1.

Recently, Jia [7] showed that the exact approximation order for ntt1
never differs from m(k) by more than 2.
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In this paper we do two things: (1) In view of the importance of Jia's
result we give a simplification of his proof, using the techniques of Dahmen
and Micchelli [5,6]. (2) By using the notion of controlled approximation [6],
we show that (in a sense to be explained below) Jia's results are sharp, see
Theorem 1.

To this end, we quote Dahmen and Micchelli [6], who defined the notion
of controlled approximation in any s-dimensional space in the following
manner:

For any set (/J = {¢p... , ¢N} of functions on IRs we define

Sh«(/J) = span !¢j (i- a): aE ZS,j = 1,..., N!, SI«(/J) = S«(/J).

S«(/J) is said to admit controlled Lp-approximation olorder m, or briefly

if and only if for any IE COO n W.~'(IRS) there exist weights wJ.a such that
for any domain il c IR S the inequalities

11 /- .~~ ~ wJ.a (h-SIP¢j (i-a))11 (il)~Chml/lp.m(ilrh)
J=I aeZ' p

while

hold for some constants C, r independent of h, il,/. Here

( )

lip

W;(il): = {I: I/lp.m(il): = ~ IIDIl/II~(il) < oo}
11l1=m

denotes the usual Sobolev spaces and ilh= {x: dist2(x, il) ~ hi.
Our set (/J will be the set of all box splines <Pi belonging to ilk.li • This is

defined as follows:
Let ei be the unit vector along the ith axis (i = 1,2) and

For some positive integers r, s, t let

QI=Q2=···=qr=dl ;

and
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As defined in [2], the box spline M r•s•t is the distribution in R 2 given by the
rule:

As shown in [2] and [4], M r•s•t E IItti , where

d = min(r + s, r + t, S + t) - 1 = n - 1 - max(r, s, t).

k= n - 2, n = r + s + t, p=d-l
(1)

Further

withJthe Fourier transform off, and p(e) = (l-e-i')/ie.
If t/J is the set of all box splines belonging to IItti and if S(t/J) E A m •oo but

S(t/J) E Am + 1,00 we will say IItti has exact controlled approximation order
m.

It is important to note that this terminology does not presuppose that II~.ti

may have a difJerent order of exact controlled approximation relative to
another set of functions in II~,ti which are different from box splines.

THEOREM 1. The exact controlled approximation order of II~.ti is 6,

Remark 1. For k = 4 the maximal smoothness for which the space IItti

is dense as IAI ---> °is p = 4.
We consider the less smooth space S = II~,ti. Here 2(k - p) = k + 1 =

m(k) = 8. We will show its exact controlled approximation order is
6=m(k)-2.

Proof For future reference we list the lowest order terms in the power
series expansion about (2nm,2nn) with variables el = 2nm + 151'
e2 = 2nn + 152 for Mr,s,t(e l , e2)

Mr,S.gl' e2)= 1, m = n = °
= [p'(2nm)]' [p'(2n(n + m))l'

X [p'(2nn)]t e5~(e51 + e5 zY e5~, m"* 0, n"* 0, m"*-n

= [p'(2nm)]'+s e5~(e51 + e52)S, m"* 0, n = ° (2)

= [p'(2nn)]s+t (151+ 152 )5 e5L m = 0, n"* °
= (-1)t [p' (2nm)]'+1 e5~ e5L m "* 0, n "* 0, m = -no

Further note p' (2np) = 1/2np, p an integer "* 0.
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From (1) it is easily checked that the only box splines that are in nt.1 are
the following 13 splines. (/J = {Q]1''''' Q]13}' where

Q]I = M 2•3•4

Q]5 = M 4 ,2,3

Q]9 = M 4,4,I

Q]13 = M 3,3,3'

Q]2 = M 2,4,3

Q]6 = M 4 ,3,2

Q]IO = M 2 ,3,3

Q]3 = M 3,2,4

Q]7 = M I ,4,4

Q]II = M 3 ,2,3

Q]4 = M 3,4.2

Q]s = M 4,I,4

Q]12 = M 3 ,3,2

From (2) it follows that:

DIJ<pi(2na) =° for a E Z2 - {Of, 1,81 ~ 4, i = 1,... , 13. (3)

(Equation (3) follows in the general case for 1,81 ~ d; see [5].)
Let 'l!o be a linear combination of the above Q];. i = 1,..., 13.
In [1] it is shown that

THEOREM 2, A necessary condition that n~,.1 be of exact controlled
approximation order 7 is that there exists 'l!o so that

1,81 = 5, !Po(O, 0) = 1 (4)

and there exist constant aiYIJ such that

D IJ !p0(2na) + L aiylJ <Pi(2na) = 0,
IYI = 5

i= 1,13
IPI = 6 (5)

We now show that there does not exist 'l!o satisfying both (4) and (5) (see
also Dahmen and Micchelli [6, Proof of Theorem 3.1 especially the case
1= 1D.

Say 'l!o = L.:?" I aiQ]i'
Using (2) we list the lowest order terms in the power series expansion

about (2nm, 2nn) with variables c;l = 2nm + &1' c;2 = 2nn + &2 for !Po·

13
!PO(C;I' c;2) = L ai' m = n = 0;

i=1

= O(&~&~), q +P = 8,p ~ 1, q ~ 1, m* -n, m* 0, n*°
(or more generally q +P = r + s + t - 1)

= [p'(2nmW [(al +a lO ) &i(&1 + &2)3 + (a 3+all) &~(&I + &2)2

+ a7&1(&1 + &2)4 +as&1(&1 + &2)]' m*0, n = 0; (6)
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= [p'(2nnW [(as + al1 )(t51+ 152)2 t5~ + (a 6 + aI2 )(t51+ 152)3 t5~

+a8(t51+ 152) 15; + a9(t5 1+ 152)4152], m = 0, n*-O

= [p'(2nmW [-(a 2+ a lO ) t5~t5~ + (a 4 + an) t5~t5~

+ a7 t5 1t5i - a9 t5i t52], m = -n *- O.

These equations imply that for Vi0 to satisfy (4), one needs:

a l + a lO = a3 + all = as + all = a6 + an = a2+ a lO

= a4 + an = a7 = as = a9 = 0
13

I ai = 1.
i= I
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(7a)

(7b)

Assuming Vio satisfies (7a) and noting that [P(t52W - [p(t52W=
p'(O) t5 2 +higher order terms, we list the new lowest order terms of Vio in the
power series expansion about (2nm, 2nn) with variables ~I = 2nm + t5 1 , ~2 =
2nn + 152

Vio(~l' ~2)

= [p'(2nmW [a2t5~(t51 + (52)4 +ast5i(t5 1+ (52)2

+ (an +a13 ) t5~(t51 + 152)3]

+ [p'(2nm)p [p'(0)][a l t5i(t51+ (52)3 t52+ a3t5~(t51 + (5 2)2 t52],

. m *- 0, n = 0 (3a)

ViO(~I' ~2)

= [p'(2nnW [alt51+ (52)2 t5i +a4(t51+ 152)4 t5~

+(a lO +a13 )(t51+ (52)3 t5~]

+ [p'(2nnW [p'(O)][as(t5 1+ t52Y t5~t51 + a6 t5 l (t51+ (52)3 t5i],

m = 0, n *- O. (8b)

From our derivation of (6) it is clear that DYqJj(2na), IYI = 5, will have no
factor [p'(2nmW at (2nm, 0), m *- O.

Hence to satisfy (5), all terms in (8a) that have [p'(2nmW as a factor
must be zero. This implies

(9a)
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Similarly we find applying the analogous argument to (8b) that

(9b)

But (9a), (9b) and (7a) imply ai=O, i= I,... , 13, hence (7b) cannot be
satisfied. Thus we have shown that there is no lJI0 satisfying (4) and (5),
hence n~,,1 is not of exact controlled approximation order 7.

COMMENTS ON JIA'S THEOREM

The key to Jia's [7] results, is his following theorem:

THEOREM 3. If k = 2p + 2 and S = nf,,1' then the exact controlled
approximation order m of IIf,,1 satisfies m ~ k

In this section of the paper, we will give a simplified proof of this theorem.
To prove Theorem 3, we will use the following criteria (see Dahmen and

Micchelli [5], Strang and Fix [9, Theorem I D.

THEOREM 4. Let B be the Fourier transform of a function B which is of
compact support and which belongs to IIf,,1. If

D13B(2na) = 0, a E Z2 - {Of,

B(O)"* °
IPI~q

(10)

then it follows that the exact controlled approximation order m of IIf,,1
satisfies m ~ q + I

For our proof we will also need the following lemma.

LEMMA I. For k an integer, there exists a trigonometric polynomial

so that

for small~.

(11 )

(12)

Proof Letfk(~)= (i~/I - e-ih)k for small ~. Then determine b1,k so that

a=0,1,...,k-2. (13)
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It is easily seen that the linear equation (13) to determine the bt,k has the
Van der Monde determinant, so (13) can be solved. Then since Pk(t5) =
(it5/1 - e-j~)k + O(t5k - I ), (12) follows.

PROOF OF JIA'S THEOREM

Following Jia, instead of considering Mr,S,! we consider a finite sum of its
translates. In our case we consider one whose Fourier transform is

and instead of one triplet of numbers (r, s, t) consider all numbers from the
sets

1= {(r, s, t)1 r + s + t = 2p + 4 and 2 ~ r, s, t ~ P + I}

J I = {(r, s, t)1 r + S + t = 2p + 3 and 2 ~ r, s, t ~ P + l}

J 2 = {(r, s, t)lr + s + t = 2p + 3 and 2 ~ r, s, t ~p}

K = {(r, s, t)1 r + s + t = 2p + 2 and 2 ~ r, s, t ~ p}.

Then define

(14)

B'- '\' '\' '\' \~
... Br,S,! - .. Br,s,! - B I + B!_ _ ...... r,s, ...... r,s, .

(r,s,l)el (r,s,l)eJ, (r,S,t)eJ2 (r,s,l)eK

From (1) it follows that B E flip +2,d' We now verify that fJ satisfies the
assumptions of Theorem 4 for q = k -1. From (2), it is clear that (10) is
satisfied for a = (m, n) and m *" n, n *" 0, m + n *" 0, Let us now consider the
case when m *" 0, n *" 0, m + n = O. For this purpose write I, J I , J 2 , K in the
form

1= {p + 1, 2,p + I}

U {(r, s, t)1 3 ~ s ~ p + 1, r + t = 2p + 4 - s, 2 ~ r, t ~ P+ l}

J 2 = {(r, s, t)13 ~ s ~ p, r + t = 2p + 3 - s, 2 ~ r, t ~ p}

J I = {(r, s, t)12 ~ s ~ p, r + t = 2p + 3 - s, 2 ~ r, t ~ P + I}

U {(r,s,t)!s=p+ l,r+t=p+2,2~r,t~p} (15)

K= {(r,s,t)12~s~p-l,r+t=2p+2-s,2~r,t~p}

U {(r, s, t)ls = p, r + t = P + 2, 2 ~ r, t ~ pl.

640/42/3-5
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L
},;;;s"o + I

r+ 1=20 +4-s
2,;r.I,,0+ I

(B -B )Y.S,t r.s~l,t
(16)

L
3"s,,0

r+I=20+3-s
2"r.I,,0

or less precisely as

(B -B )- '\' (B -B )r,s,t r,s-l,t L... r.s.t r,s-l.t'
s=o+1

r+I=0+2
2,;r.I,,0

(17)

From (2) we find for e, = 2nm + 15" e2 = 2nn + 152, m 1=- 0, n 1=- 0, m + n = O.

and from (2) and (13)

B -Br,s,t r.s-l,t

B~ O(~o+'~o+l)
0+ 1.2.0+ I = VI V2 (18)

= Pr(2nm +15,) PI(-2nm + c5 2)[p(2nm + 15 1)]' [p(-2nm + c5 2)j!

X [Ps(c5, + c5 2 )[p(c5, + c52)]S

-Ps _ , (c5 1 + c52 )[p(c5. + c52W- ']
= O(c5~ c5mO(c5 1 + c5 2Y- ' - 0(15 1 + c52)S-2]

= O(c5~ c5~(c5, + c5 2y- 2
). (19)

Thus (10) is satisfied at m"* 0, n 1=- 0, m + m = O. By similar reasoning
(10) is also verified at all other points 2na a E Z2 - {O}. For example, to
treat the points m = 0, n 1=- 0, we note that r, S, t appear symmetrically in I,
J" J 2 and K in (14). Thus instead of developing B in the form (17), we can
just as well develop it as

B=B ±'\'(B -B )2,p+l,p+l L r,s,t r-l.s,t

Proceeding as in (18) and (19) we find that at m = 0, n1=-O

(20)

B2•0 + '.0+ 1= (15 1 + 152)0+. c5~+ I

Br•S•1 - Br-l.s.1 = 0«151+ c5 2Y O~ c5~- 2).

Hence we see that (10) is also verified at m = 0, n 1=- O. Analogous reasoning
establishes the result at n = 0, m 1=- 0 and completes the proof.



BIVARIATE SPLINES ON A DIAGONAL MESH

REFERENCES

265

1. C. DE BOOR AND R. DE VORE, Approximation by smooth multivariate splines, Trans.
Amer. Math. Soc 276 (1983), 775-788.

2. C. DE BOOR AND K. HOLLIG, B-splines from parallelepipeds. J. d'analyse Math., in press
3. C. DE BOOR AND K. HOLLIG, Approximation from piecewise C'-cubics: A counterexample,

Proc. Amer. Math. Soc. 87 (1983), 649-655.
4. C. DE BOOR AND K. HOLLIG, Bivariate box splines and smooth pp functions on a three­

direction mesh, J. Comput. Appl. Math. 9 (1983), 13-28.
5. W. DAHMEN AND C. A. MICCHELLI, Translates of multivariate splines, Linear Alg. Appl.

S2 (1983), 217-234.
6. W. DAHMEN AND C. A. MICCHELLI, On the approximation order from certain multivariate

spline spaces, J. Austral. Math. Soc., in press.
7. R.-Q. JIA, "Approximation by Smooth Bivariate Splines on a Three-Direction mesh,"

MRC TSR #2494 (1983); in "Approximation Theory IV" (C. H. Chui, L. L. Schumaker
and J. E. Ward, Eds.), Academic Press, New York, in press.

8. R. B. BARRAR AND H. L. LOEB, A necessary condition for controlled approximation, to
appear.

9. G. STRANG AND G. FIX, A Fourier analysis of the finite element variational method,
Collect. [ME 2, Cicio Erice, 1971, "Constructive Aspects of Functional Analysis"
(G. Geymonat, Ed.) (1973), 793-840.


